Surname
Other Names

Centre Number	Candidate Number
0	

GCSE

WJEC CBAC

4462/02

SCIENCE A/CHEMISTRY

CHEMISTRY 1

HIGHER TIER
A.M. TUESDAY, 14 January 2014

1 hour

ADDITIONAL MATERIALS

In addition to this paper you will need a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correcting fluid.
Write your name, centre number and candidate number in the spaces at the top of this page.
Answer all questions.

For Examiner's use only			
Question	Maximum Mark	Mark Awarded	
1.	5		
2.	9		
3.	4		
4.	6		
5.	8		
6.	8		
7.	5		
8.	9		
9.	6		
Total	60		

Write your answers in the spaces provided in this booklet.
If you run out of space, use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded that assessment will take into account the quality of written communication used in your answer to questions 4 and 9 .
The Periodic Table is printed on the back cover of the examination paper and the formulae for some common ions on the inside of the back cover.

[1]
(a) Give the letter of the element which is found in Group 0 and Period 2.
(b) Give the letters of the two elements which you would expect to have similar chemical properties. Give a reason for your choice.
Letters and

Reason
(c) The table below shows the properties of three elements 1, 2 and 3.

Element	Properties			
	Melting Point $\left({ }^{\circ} \mathrm{C}\right)$	Boiling Point $\left({ }^{\circ} \mathrm{C}\right)$	Appearance	Malleable or brittle
$\mathbf{1}$	1084	2927	shiny brown solid	malleable
$\mathbf{2}$	1414	2900	shiny grey solid	brittle
$\mathbf{3}$	115	445	yellow solid	brittle

State, giving reasons, which of elements $\mathbf{1 , 2}$ or $\mathbf{3}$ could be element \mathbf{C} in the Periodic Table above.
\qquad
\qquad
\qquad

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

2. (a) Crude oil can be separated into simpler mixtures, called fractions, which contain hydrocarbon compounds with boiling points within a similar range.

The graph below shows the boiling points of hydrocarbons containing 1 to 12 carbon atoms.

Boiling point $\left({ }^{\circ} \mathrm{C}\right)$

(i) Give the number of carbon atoms in the hydrocarbon which has the lowest boiling point.
\qquad
(ii) State how the boiling point changes as the number of carbon atoms increases. [1]
(iii) A company wants to produce a fraction with a boiling point in the range $120-140^{\circ} \mathrm{C}$.
Give the number of carbon atoms present in the hydrocarbons found in this fraction.
(b) Plastic has replaced glass for making some drink bottles.

Apart from cost, give one property of plastic that makes it a more suitable material for making drink bottles.
(c) The graph below shows the number of plastic drink bottles sold and recycled in the United States between 1996 and 2008.

Calculate the percentage (\%) of plastic bottles sold in 2008 that were recycled.
(d) State and explain the advantages of recycling plastic.
\qquad
\qquad
3. The diagram below shows some reactions of dilute hydrochloric acid.

(a) Name the following substances.
blue solution \mathbf{A}
colourless gas B \qquad
alkali C
(b) Balance the symbol equation for the reaction between zinc and dilute hydrochloric acid.

4. All water supplies in the UK are chlorinated but only some are fluoridated.

State why each process is carried out and outline why some people are opposed to the fluoridation of drinking water but no one opposes chlorination.

Examiner
5. (a) Aluminium is obtained by the electrolysis of molten alumina.

The electrode equations below show how the products are formed.

(i) Choose from the equations above

$$
\begin{aligned}
& \text { an ion, } \\
& \text { an atom, } \\
& \text { a molecule. }
\end{aligned}
$$

(ii) At which electrode is aluminium formed? Give the reason for your answer.
(iii) Use the information in the diagram above to give the chemical name and formula of alumina.

Chemical name \qquad
Formula
(iv) State one environmental problem associated with the electrolysis of molten alumina.
(b) Aluminium is a good electrical conductor and is therefore used to make overhead power cables.

Give a different property of aluminium and one use which relies on this property.
6. (a) The graph below shows the total sulfur dioxide emissions in the UK between 1970 and 2012.

(i) Use the graph to calculate the decrease in sulfur dioxide emissions in tonnes between 1994 and 2004.

Decrease in sulfur dioxide emissions $=$ \qquad tonnes
(ii) Suggest and explain a possible reason for the trend shown in the graph.
\qquad
\qquad
(iii) Balance the symbol equation below which shows a reaction that can lead to the formation of sulfuric acid in the atmosphere.

The graph below shows the results recorded.

(i) Name the type of reaction taking place.
(ii) Limestone affects the acidity of acid rain. Describe how the graph supports this
\qquad
(iii) Apart from destroying limestone buildings and statues, give one other problem associated with acid rain.
\qquad
statement.
7. Satellite images are used to show the area of Arctic sea ice.

(a) The shrinking of the ice cap is interpreted by environmental groups as the result of global warming. State and explain the main cause of global warming.
\qquad
\qquad
\qquad
(b) Give one consequence of the reduction of Arctic sea ice.
(c) Scientists are currently developing a process called carbon capture and storage (CCS) to reduce the problem of global warming. There are three main steps to CCS. Firstly, carbon dioxide is trapped and separated from other gases produced in coal-powered electricity plants. The captured carbon dioxide is transported to a storage location and finally stored far away from the atmosphere (underground or deep in the ocean).

Use this information to suggest two reasons why some scientists do not support the use of CCS.
\qquad
\qquad
\qquad

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

8. A pupil used the apparatus below to carry out an investigation to find the temperature change which occurs when dilute hydrochloric acid reacts with dilute sodium hydroxide solution.

Volume of acid added $\left(\mathrm{cm}^{3}\right)$	Temperature ($\left.{ }^{\circ} \mathrm{C}\right)$		
	Experiment 1	Experiment 2	Mean
0	21.0	21.0	21.0
10	22.1	23.5	22.8
20	24.9	23.5	24.2
30	28.0	22.8	25.4
40	26.0	26.8	26.4
50	27.4	26.6	27.0
60	26.6	26.8	26.7
70	26.2	26.2	26.2
80	25.5	25.7	25.6

(a) From the data in the table, state the volume of acid where the temperature readings appear to be incorrect. Give the reason for your choice.
\qquad
\qquad
(b) On the grid opposite plot the volume of acid against the mean temperature and draw a suitable line.

Mean temperature (${ }^{\circ} \mathrm{C}$)

9. Many car companies are manufacturing hydrogen-fuelled cars.

Describe and explain the advantages and disadvantages of hydrogen as a replacement for petrol and diesel to fuel cars.
\qquad

END OF PAPER

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

FORMULAE FOR SOME COMMON IONS

POSITIVE IONS		NEGATIVE IONS	
Name	$\mathrm{Formula}^{3+}$	Name	Formula
Aluminium	Al^{3+}	Bromide	Br^{-}
Ammonium	$\mathrm{NH}_{4}{ }^{+}$	Carbonate	$\mathrm{CO}_{3}{ }^{2-}$
Barium	Ba^{2+}	Chloride	Cl^{-}
Calcium	Ca^{2+}	Fluoride	F^{-}
Copper(II)	Cu^{2+}	Hydroxide	OH^{-}
Hydrogen	H^{+}	lodide	I^{-}
Iron(II)	Fe^{2+}	Nitrate	$\mathrm{NO}_{3}{ }^{-}$
Iron(III)	Fe^{3+}	O^{2-}	
Lithium	Li^{+}	Oxide	$\mathrm{SO}_{4}{ }^{2-}$
Magnesium	Mg^{2+}	Sulfate	
Nickel	Ni^{2+}		
Potassium	K^{+}		
Silver	Ag^{+}		
Sodium	Na^{+}		
Zinc	Zn^{2+}		

20

